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Abstract In this paper, we stumble upon that the normal ordering expansion for
(
x d

dx

)n
is equivalent

to the expansion of (bDG)n, where G is the context-free grammar defined by G = {a → a, b → 1}.
Motivated by this fact, we introduce the definition of grammatical basis. We then study several

grammatical bases generated by G = {a→ 1, b→ 1}. Using grammatical bases, we give a classification

of grammars. In particular, we provide new grammatical descriptions for Ward numbers, Hermite

polynomials, Bessel polynomials, Chebyshev polynomials and logarithmic polynomials arising from an

integral. We end this paper by giving some applications of grammatical bases. One can see that if two

or more polynomials share a grammatical basis, then they share the same coefficients, and it might be

helpful for the detection of intrinsic relationship among superficially different structures.

Keywords Eulerian numbers, Grammatical bases, Increasing trees, Permutations

1 Introduction

The Weyl algebra W is the unital algebra generated by two symbols D and U satisfying

the commutation relation DU − UD = I, where I is the identity which we identify with “1”.

An example of the Weyl algebra is the algebra of differential operators acting on the ring of

polynomials in x, generated by D = d
dx and U acting as multiplication by x. For any w ∈ W ,

the normal ordering problem is to find the normal ordering coefficients ci,j in the expansion:

w =
∑
i,j

ci,jU
iDj .
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The following expansion has been studied as early as 1823 by Scherk [3, Appendix A]:(
x

d

dx

)n
=

n∑
k=0

{
n

k

}
xk

dk

dxk
, (1)

where
{
n
k

}
is the Stirling number of the second kind, i.e., the number of partitions of the

set [n] = {1, 2, . . . , n} into k blocks. Many generalizations of (1) occur in quantum physics,

combinatorics and algebra, see Schork [41] for a survey and see [18–20] for recent progress.

A context-free grammar (also known as Chen’s grammar [8, 15]) G over an alphabet V is

defined as a set of substitution rules replacing a letter in V by a formal function over V . The

formal derivative DG with respect to G satisfies the derivation rules:

DG(u+ v) = DG(u) +DG(v), DG(uv) = DG(u)v + uDG(v).

So the Leibniz rule holds:

Dn
G(uv) =

n∑
k=0

(
n

k

)
Dk
G(u)Dn−k

G (v). (2)

Recently, context-free grammars have been used extensively in the study of permutations,

perfect matchings and increasing trees, see [11, 12, 27, 38] for instances.

In this paper, we always let DG be the formal derivative associated with the grammar G.

As an illustration, we now recall the first classical result in this topic.

Proposition 1.1 ([8]) If G = {a→ ab, b→ b}, then Dn
G(a) = a

∑n
k=0

{
n
k

}
bk.

The following is a fundamental result of this paper.

Theorem 1.2 The expansion (1) is equivalent to Proposition 1.1.

Proof Let G = {a → ab, b → b} and G̃ = {a → a, b → 1}. It is easily proved that

Dn
G(a) =

(
bDG̃

)n
(a). Note that (1) can be rewritten as

(
bDG̃

)n
=
∑n
k=0

{
n
k

}
bkDk

G̃
. It readily

follows that

(
bDG̃

)n
(a) =

n∑
k=0

{
n

k

}
bkDk

G̃
(a) = a

n∑
k=0

{
n

k

}
bk,

as desired. This completes the proof.

As suggested in the proof of Theorem 1.2, it is natural to introduce the following definition.

Definition 1.3 Suppose u1(a, b), u2(a, b), v1(a, b), v2(a, b), w1(a, b) and w2(a, b) are all giv-

en functions. Let G1 = {a→ u1(a, b), b→ v1(a, b)} and G2 = {a→ u2(a, b), b→ v2(a, b)}. If

Dn
G1

(w1(a, b)) = (w2(a, b)DG2
)
n

(w1(a, b)) = fn(a, b).

then we say that G2 is a grammatical basis of G1. We also say that G2 is a grammatical basis

of the polynomial fn(a, b) (or its coefficient sequence).

From the proof of Theorem 1.2, we know that G̃ = {a→ a, b→ 1} is a grammatical basis

of G = {a→ ab, b→ b}. The main idea of this paper is stated explicitly in Remark 2.3.
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Let c(n, k) be the (signless) type A Stirling number of the first kind, i.e., the number of

permutations of the set [n] with k cycles, see [44]. Let cB(n, k) be the (signless) type B Stirling

numbers of the first kind (see [39, Definition 1.4]). They satisfy the recurrence relation:

c(n, k) = c(n− 1, k − 1) + (n− 1)c(n− 1, k), c(0, k) = δ0,k;

cB(n, k) = cB(n− 1, k − 1) + (2n− 1)cB(n− 1, k), cB(0, k) = δ0,k.

It is now well known that

x(x+ 1)(x+ 2) · · · (x+ n− 1) =

n∑
k=0

c(n, k)xk;

(x+ 1)(x+ 3) · · · (x+ 2n− 1) =

n∑
k=0

cB(n, k)xk.

As pointed out by Sagan-Swanson [39], cB(n, k) appears implicitly in a formula of the charac-

teristic polynomial of the intersection lattice of an arbitrary finite complex reflection group.

Another example of Definition 1.3 is given as follows.

Theorem 1.4 Let G = {a → pa, b → b}, where p is a given parameter. Then G is a

common grammatical basis of
(
n
k

)
, c(n, k) and cB(n, k).

Proof By induction, it is routine to verify that for any n > 1, we have

Dn
G(ab) = (p+ 1)nab, (bDG)n(ab) =

n∏
k=1

(p+ k)abn+1, (b2DG)n(ab) =

n∏
k=1

(p+ (2k− 1))ab2n+1.

When p = x, a = b = 1, then obviously

Dn
G(ab)|p=x,a=b=1 = (x+ 1)n =

n∑
k=0

(
n

k

)
xk,

(bDG)n(ab)|p=x,a=b=1 = (x+ 1)(x+ 2) · · · (x+ n) =

n∑
k=1

c(n, k)(x+ 1)k,

(b2DG)n(ab)|p=x,a=b=1 = (x+ 1)(x+ 3) · · · (x+ 2n− 1) =

n∑
k=0

cB(n, k)xk,

and this completes the proof.

This paper is organized as follows. In Section 2, we investigate some grammatical bases

generated by the grammatical basis {a→ 1, b→ 1}, including {a→ b, b→ b}, {a→ b2, b→
b2}, {a → ab, b → ab} and {a → ab2, b → ab2}. In Section 3, we first give a classification

of several grammars, and we then end this paper by giving some applications of grammatical

bases. The advantages of introducing grammatical bases can be summarized as follows:

• In view of the seven Tables given in Section 3, we see that grammars can be systematically

discovered;

• As suggested by Corollary 3.3, if two or more polynomials share a grammatical basis,

then they can be computed by the same coefficients. It might be helpful for the detection

of intrinsic relationship among superficially different structures.
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2 Grammatical bases generated by the basis {a→ 1, b→ 1}
2.1 Notation and preliminaries

The (type A) Eulerian polynomials An(x) can be defined by the differential expression:(
x

d

dx

)n
1

1− x
=

∞∑
k=0

knxk =
An(x)

(1− x)n+1
.

They satisfy the recurrence relation

An(x) = nxAn−1(x) + x(1− x)
d

dx
An−1(x), A0(x) = 1. (3)

Let Sn be the symmetric group of all permutations of [n]. For π = π(1)π(2) · · ·π(n) ∈ Sn, an

index i is a descent (resp. excedance) if π(i) > π(i+ 1) (resp. π(i) > i). Let des (π) and exc (π)

be the numbers of descents and excedances of π, respectively. The Eulerian polynomials can

also be defined by

An(x) =
∑
π∈Sn

xdes (π)+1 =
∑
π∈Sn

xexc (π)+1 =

n∑
k=1

〈
n

k

〉
xk,

where
〈
n
k

〉
are known as the Eulerian numbers (see [42, A008292]). It is well known that〈

n

k

〉
= k

〈
n− 1

k

〉
+ (n− k + 1)

〈
n− 1

k − 1

〉
. (4)

Using a labeling of circular permutations, Dumont [15] obtained the following result.

Lemma 2.1 ([15, Section 2.1]) Let G = {a→ ab, b→ ab}. Then for n > 1, one has

Dn
G(a) = Dn

G(b) = bn+1An

(a
b

)
.

Following Carlitz [7], the second-order Eulerian polynomials Cn(x) are defined by

∞∑
k=0

{
n+ k

k

}
xk =

Cn(x)

(1− x)2n+1
,

which have been well studied in recent years, see [7, 9, 22, 23, 37]. They satisfy the following

recursion (see [7, Eq. (13)]):

Cn+1(x) = (2n+ 1)xCn(x) + x(1− x)
d

dx
Cn(x), C0(x) = 1.

In particular, C1(x) = x,C2(x) = x+ 2x2, C3(x) = x+ 8x2 + 6x3. Let n2 = {1, 1, 2, 2, . . . , n, n}
be a multiset, where each i appears 2 times. We say that a multipermutation σ of n2 is Stirling

permutation if σs > σi as soon as σi = σj and i < s < j. Denote by Qn the set of Stirling

permutations of n2. For σ = σ1σ2 · · ·σ2n ∈ Qn, the numbers of ascents, plateaux and descents

are respectively defined by

asc (σ) = #{i ∈ [2n− 1] : σi−1 < σi, σ0 = 1},
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plat (σ) = #{i ∈ [2n− 1] : σi = σi+1},

des (σ) = #{i ∈ {2, 3, . . . , 2n} : σi > σi+1, σ2n+1 = 0}.

Dumont [14] discovered that the triple statistic (asc ,plat ,des ) is a symmetric distribution

over Qn, which was independently rediscovered by Bóna [4]. It is now well known that

Cn(x) =
∑
σ∈Qn

xasc (σ) =
∑
σ∈Qn

xplat (σ) =
∑
σ∈Qn

xdes (σ).

Using grammatical labeling of Stirling permutations, Chen-Fu [9] deduced the following result.

Lemma 2.2 Let G = {a→ ab2, b→ ab2}. Then for n > 1, one has

Dn
G(a) = Dn

G(b) = b2n+1Cn

(a
b

)
.

In this section, we always set

G1 = {a→ 1, b→ 1}, G2 = {a→ b, b→ b},

G3 = {a→ b2, b→ b2}, G4 = {a→ ab, b→ ab}, G5 = {a→ ab2, b→ ab2}.

For any n > 1, it is clear that

(abDG1)n(a) = (aDG2)n(a) = Dn
G4

(a) = bn+1An

(a
b

)
,

(ab2DG1
)n(a) = (abDG2

)n(a) = (aDG3
)n(a) = (bDG4

)n(a) = Dn
G5

(a) = b2n+1Cn

(a
b

)
.

So G1 and G2 are both the common grammatical bases of An(x) and Cn(x).

Remark 2.3 (Main idea) Let f(a, b) be a bivariate function. ThenG1 = {a→ 1, b→ 1}
is the grammatical basis of G = {a → f(a, b), b → f(a, b)}, since Dn

G(a) = (f(a, b)DG1
)
n

(a).

In general, there exists an expansion as follows:

(f(a, b)DG1)n =

n∑
k=1

Fn,k(a, b)Dk
G1
.

Note that DG1
(a) = 1 and D2

G1
(a) = DG1

(1) = 0. Then we obtain

Dn
G(a) = (f(a, b)DG1)n(a) =

n∑
k=1

Fn,k(a, b)Dk
G1

(a) = Fn,1(a, b).

Therefore, in order to study Dn
G(a), it is often helpful to investigate (f(a, b)DG1

)n, since it

may give an interesting refinement of Dn
G(a). Moreover, if two or more polynomials share a

grammatical basis, then they can be computed by the same coefficients Fn,k(a, b), and so it is

promising to further explore the connections among associated combinatorial structures.
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2.2 On the expansion of (abDG1)
n
, where G1 = {a→ 1, b→ 1}

In order to investigate the powers of abDG1
, we need to introduce some definitions. The

degree of a vertex in a tree is referred to the number of its children. We say that T is a planted

full binary increasing plane tree on [n] if it is a full binary tree with n+ 1 unlabeled leaves and

n labeled internal vertices, and satisfying the following conditions (see Figure 1 for examples,

where we give every right leaf a weight b, and every left leaf a weight a):

(i) Internal vertices are labeled by 1, 2, . . . , n. The node 1 is distinguished as the root;

(ii) Each internal node has exactly two ordered children, which are referred to as a left child

and a right child;

(iii) For each 2 6 i 6 n, the labels of the internal nodes in the unique path from the root to

the internal node labelled i form an increasing sequence.

Definition 2.4 We say that F is a full binary k-forest on [n] if it has k connected com-

ponents, each component is a planted full binary increasing plane tree, the labels of the roots

are increasing from left to right and the labels of the k-forest form a set partition of [n].

1

b
2

ba
;

1

2

ba

a

Figure 1: The planted full binary increasing plane trees on [2] encoded by ab2DG1
and a2bDG1

.

Theorem 2.5 Let G1 = {a→ 1, b→ 1}. For any n > 1, we have

(abDG1)
n

=

n∑
k=1

n∑
`=k

fn,k,`a
`bn+k−`Dk

G1
, (5)

where the coefficients fn,k,` satisfy the recurrence relation

fn+1,k,` = `fn,k,` + (n+ k − `+ 1)fn,k,`−1 + fn,k−1,`−1, (6)

with the initial conditions f1,1,1 = 1 and f1,k,` = 0 if (k, `) 6= (1, 1). The coefficient fn,k,` counts

full binary k-forests on [n] with ` left leaves. Moreover, we have

(abDG1
)
n

=

n∑
k=1

b(n+k)/2c∑
`=k

γ(n, k, `)(ab)`(a+ b)n+k−2`Dk
G1
, (7)

where the coefficients γ(n, k, `) satisfy the recursion

γ(n+ 1, k, `) = `γ(n, k, `) + 2(n+ k − 2`+ 2)γ(n, k, `− 1) + γ(n, k − 1, `− 1), (8)

with the initial conditions γ(1, 1, 1) = 1 and γ(1, k, `) = 0 for all (k, `) 6= (1, 1).
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Proof (A) The first few (abDG1)
n

are given as follows:

(abDG1
)
2

= (ab2 + a2b)DG1
+ a2b2D2

G1
,

(abDG1
)
3

= (ab3 + 4a2b2 + a3b)DG1
+ (3a2b3 + 3a3b2)D2

G1
+ a3b3D3

G1
,

(abDG1
)
4

= (ab4 + 11a2b3 + 11a3b2 + a4b)DG1
+ (7a2b4 + 22a3b3 + 7a4b2)D2

G1
+

(6a3b4 + 6a4b3)D3
G1

+ a4b4D4
G1
.

Thus (5) holds for any n 6 4. Assume that it holds for n. Then we have

(abDG1
)
n+1

= abDG1

(
n∑
k=1

n∑
`=k

fn,k,`a
`bn+k−`Dk

G1

)

=

n∑
k=1

n∑
`=k

fn,k,`
[(
`a`bn+k−`+1 + (n+ k − `)a`+1bn+k−`

)
Dk
G1

+ a`+1bn+k−`+1Dk+1
G1

]
.

Extracting the coefficient of a`bn+k−`+1Dk
G1

leads to (6), and so (5) holds for n+ 1.

(B) Let F be a full binary k-forest. We first give a labeling of F as follows. Label each

planted full binary increasing plane tree by DG1
, a left leaf by a and a right leaf by b. The weight

of F is defined to be the product of the labels of all trees in F . See Figure 1 for illustrations.

Assume that the weight of F is a`bn+k−`Dk
G1

. Let us examine how to generate a forest F ′ on

[n+ 1] by adding the vertex n+ 1 to F . There are three possibilities:

c1: When the vertex n + 1 is attached to a leaf with label a, then n + 1 becomes a internal

node with two children. The weight of F ′ is a`bn+k−`+1Dk
G1

;

c2: When the vertex n + 1 is attached to a leaf with label b, then n + 1 becomes a internal

node with two children. The weight of F ′ is a`+1bn+k−`Dk
G1

;

c3: If the vertex n + 1 is added as a new root, then F ′ becomes a full binary (k + 1)-forest,

the left child of n+1 has a label a, while the right child of n+1 has a label b. The weight

of F ′ is given by a`+1bn+k−`+1Dk+1
G1

.

The above three cases exhaust all the possibilities. Thus (abDG1)
n+1

equals the sum of the

weights of all full binary k-forests on [n+ 1], where 1 6 k 6 n+ 1.

(C) We now consider a change of the grammar G1. Setting u = ab and v = a+ b, we get

DG1(u) = DG1(ab) = v, DG1(v) = DG1(a+ b) = 2.

Let G̃ = {u→ v, v → 2}. Then we have (abDG1)
n

=
(
uDG̃

)n
. Note that(

uDG̃

)2
= uvDG̃ + u2D2

G̃
,
(
uDG̃

)3
= (uv2 + 2u2)DG̃ + 3u2vD2

G̃
+ u3D3

G̃
.

By induction, we see find that

(
uDG̃

)n
=

n∑
k=1

b(n+k)/2c∑
`=k

γ(n, k, `)u`vn+k−2`Dk
G̃
,

where the coefficients γ(n, k, `) satisfy the recursion (8). Then upon taking u = ab and v = a+b,

we get (7). This completes the proof.
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Define

an(x, y, z) =

n∑
k=1

n∑
`=k

fn,k,`x
`yn+k−`zk, a0(x, y, z) = 1.

Multiplying both sides of (6) by x`yn+k−`+1zk and summing over all ` and k, we obtain

an+1(x, y, z) = x(n+ yz)an(x, y, z) + x(y − x)
∂

∂x
an(x, y, z) + xz

∂

∂z
an(x, y, z).

In particular, an+1(1, 1, z) = (n+ z)an(1, 1, z) + z d
dzan(1, 1, z), a0(1, 1, z) = 1. Let

an(1, 1, z) =

n∑
k=1

L(n, k)zk.

It follows that L(n+ 1, k) = (n+ k)L(n, k) + L(n, k − 1), from which we notice that L(n, k) is

the (signless) Lah number. Explicitly, L(n, k) =
(
n−1
k−1
)
n!
k! , see [19] for instance.

Corollary 2.6 For n > 1, the polynomials an(1, 1, z) are the Lah polynomials, i.e.,

an(1, 1, z) =

n∑
k=1

(
n− 1

k − 1

)
n!

k!
zk.

A partition of [n] into lists is a set partition of [n] for which the elements of each block are

linearly ordered. From [42, A008297], we see that L(n, k) counts partitions of [n] into k lists,

where a list means an ordered subset. Suppose each list is prepended and appended by 0, i.e.,

we identify a list σ1σ2 · · ·σi with the word 0σ1σ2 · · ·σi0. An index p ∈ {0, 1, 2, . . . , i − 1} is

an ascent of σ1σ2 · · ·σi if σp < σp+1, and q ∈ {1, 2, . . . , i} is a descent if σp > σp+1, where we

set σ0 = σi+1 = 0. Let F be a full binary k-forest. Following [43, p. 51], a bijection from full

binary k-forests to set partitions with k lists can be given as follows: Read the internal vertices

of trees (from left to right) of F in symmetric order, i.e., read the labels of the left subtree

(in symmetric order, recursively), then the label of the root, and then the labels of the right

subtree. Using this correspondence, one can deduce the following result.

Corollary 2.7 Let fn,k,` be defined by (5). Then fn,k,` is the number of set partitions of

[n] into k lists with ` ascents and n+ k − ` descents. In particular, fn,1,` =
〈
n
`

〉
.

2.3 On the expansion of (aDG2
)
n
, where G2 = {a→ b, b→ b}

We say that T is a planted binary increasing plane tree on [n] if it is a binary tree with n

unlabeled leaves and n labeled internal vertices, and satisfying the following conditions (where

we give every right leaf a weight b, and each of the other leaves a weight a, see Figure 2):

(i) Internal vertices are labeled by 1, 2, . . . , n. The node labelled 1 is distinguished as the

root and it has only one child;

(ii) Excluding the root, each internal node has exactly two ordered children, which are referred

to as a left child and a right child;

(iii) For each 2 6 i 6 n, the labels of the internal nodes in the unique path from the root to

the internal node labelled i form an increasing sequence.
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1

2

b
3

ba
;

1

2

3

ba

a

Figure 2: Planted binary increasing plane trees on [3] encoded by ab2DG2
and a2bDG2

.

1

2

ba

3

a

;

1

3

ba

2

a

;

1

a

2

3

ba
;

1

a

2

a

3

a

Figure 3: Three 2-forests on [3] encoded by a2bD2
G2

, and the 3-forest on [3] encoded by a3D3
G2

.

Definition 2.8 We say that F is a binary k-forest on [n] if it has k connected components,

each component is a planted binary increasing plane tree, the labels of the roots are increasing

from left to right and the labels of the k-forest form a set partition of [n].

Theorem 2.9 Let G2 = {a→ b, b→ b}. For any n > 1, one has

(aDG2)n =

n∑
k=1

n∑
`=k

hn,k,`a
`bn−`Dk

G2
, (9)

where the coefficients hn,k,` satisfy the recurrence relation

hn+1,k,` = `hn,k,` + (n− `+ 1)hn,k,`−1 + hn,k−1,`−1, (10)

with h1,1,1 = 1 and h1,k,` = 0 if (k, `) 6= (1, 1). The coefficient hn,k,` counts binary k-forests on

[n] with n− ` right leaves.

Proof (A) The first few (aDG2
)n are given as follows:

(aDG2
)2 = abDG2

+ a2D2
G2
, (aDG2

)3 = (ab2 + a2b)DG2
+ 3a2bD2

G2
+ a3D3

G2
,

(aDG2
)4 = (ab3 + 4a2b2 + a3b)DG2

+ (7a2b2 + 4a3b)D2
G2

+ 6a3bD3
G2

+ a4D4
G2
.

Thus the expansion (9) holds for any n 6 4. Assume that it holds for a given n. Since

(aDG2)n+1 = aDG2 (aDG2)
n

= aDG2

(
n∑
k=1

n∑
`=k

hn,k,`a
`bn−`Dk

G2

)
,

it follows that

(aDG2
)
n+1

=

n∑
k=1

n∑
`=k

hn,k,`
[(
`a`bn−`+1 + (n− `)a`+1bn−`

)
Dk
G2

+ a`+1bn−`Dk+1
G2

]
. (11)
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Extracting the coefficient of a`bn−`+1Dk
G2

on both sides yields (10), and so (9) holds for n+ 1.

(B) Let F be a binary k-forest. We first give a labeling of F as follows. Label each planted

binary increasing plane tree by DG2
, a right leaf by b, and all the other leaves are labeled by

a. The weight of F is defined to be the product of the labels of all trees in F . See Figures 2

and 3 for illustrations. Suppose the weight of F is a`bn−`Dk
G2

. Let us examine how to generate

a forest F ′ on [n+ 1] by adding the vertex n+ 1 to F . We have the following three possibilities:

c1: When the vertex n + 1 is attached to a leaf with label a, then n + 1 becomes a internal

node with two children. The weight of F ′ is a`bn−`+1Dk
G2

;

c2: When the vertex n + 1 is attached to a leaf with label b, then n + 1 becomes a internal

node with two children. The weight of F ′ is a`+1bn−`Dk
G2

;

c3: If the vertex n + 1 is added as a new root, then F ′ becomes a binary (k + 1)-forest and

the child of n+ 1 has a label a. The weight of F ′ is given by a`+1bn−`Dk+1
G2

.

As each case corresponds to a term in the right of (11), then (aDG2
)
n+1

equals the sum of the

weights of all binary k-forests on [n+ 1], where 1 6 k 6 n+ 1. This finishes the proof.

Comparing (10) with (22), we see that hn+1,1,` =
〈
n
`

〉
. We define

hn(x, y, z) =

n∑
k=1

n∑
`=k

hn,k,`x
`yn−`zk. (12)

Multiplying both sides of (10) by x`yn+1−`zk and summing over all ` and k, we get

hn+1(x, y, z) = x(n+ z)hn(x, y, z) + x(y − x)
∂

∂x
hn(x, y, z), h0(x, y, z) = 1. (13)

Combining (3) and (13), we find that hn(x, 1, 1) equals the Eulerian polynomial An(x). Note

that the sum of exponents of x and y equals n in a general term x`yn−`zk. By induction,

it is easy to verify that yhn(1, y, 1) = An(y). Using (10), we notice that hn,k,k−1 = 0 and

hn+1,k,k = khn,k,k+hn,k−1,k−1. Hence hn,k,k satisfies the same recurrence and initial conditions

as
{
n
k

}
, so they agree. In conclusion, we obtain the following result.

Corollary 2.10 For n > 1, we have

hn(1, 1, z) = z(z + 1) · · · (z + n− 1) =

n∑
k=1

[
n

k

]
zk,

n∑
k=1

hn,k,kz
k =

n∑
k=1

{
n

k

}
zk,

hn(x, y, 1) = ynAn

(
x

y

)
, An(x) = hn(x, 1, 1) = xhn(1, x, 1).

2.4 On the expansion of (aDG)
n
, where G = {a→ b, b→ pb}

In [21], Foata-Schützenberger introduced the q-Eulerian polynomials

An(x; q) =
∑
π∈Sn

xexc (π)qcyc (π).
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They satisfy the recurrence relation (see [6, Proposition 7.2]):

An+1(x; q) = (nx+ q)An(x; q) + x(1− x)
d

dx
An(x; q), A1(x; q) = 1. (14)

In this subsection, we always write permutation by its standard cycle form, in which each

cycle has its smallest element first and the cycles are written in increasing order of their first

elements. A cycle descent of a permutation is a pair (a, b) where a is the element just before

b in its cycle and a > b. Let cdes (π) be the number of cycle descents of π. For example,

cdes ((1,4, 2)(3, 5, 7)(6,9, 8)) = 2. In a cycle with k elements (k > 2), the sum of the numbers

of excedances and cycle descents equals k − 1. For π ∈ Sn, so we have

exc (π) + cdes (π) + cyc (π) = n.

Example 2.11 If π = (1, 4, 2)(3, 5, 7)(6, 9, 8), then exc (π) = 4, cdes (π) = 2.

We can now present a generalization of Theorem 2.9.

Theorem 2.12 Let G = {a→ b, b→ pb}. For any n > 1, one has

(aDG)n|DG=q =
∑
π∈Sn

an−exc (π)bexc (π)pcdes (π)qcyc (π).

When p = 1, it reduces to (aDG)n|p=1,DG=q = hn(a, b, q), where hn(x, y, z) is defined by (12).

Proof The first few (aDG)n are listed as follows:

(aDG)2 = abDG + a2D2
G, (aDG)3 = (ab2 + pa2b)DG + 3a2bD2

G + a3D3
G,

(aDG)4 = (ab3 + 4pa2b2 + p2a3b)DG + (7a2b2 + 4pa3b)D2
G + 6a3bD3

G + a4D4
G.

Assume the following expansion holds for a given n:

(aDG)n =

n∑
k=1

n∑
`=k

An,k,`(p)a
`bn−`Dk

G. (15)

Clearly, A1,1,1(p) = 1 and A1,k,`(p) = 0 if (k, `) 6= (1, 1). Since

(aDG)n+1 = aDG (aDG)
n

= aDG

(
n∑
k=1

n∑
`=k

An,k,`(p)a
`bn−`Dk

G

)
,

it follows that

An+1,k,`(p) = `An,k,`(p) + (n− `+ 1)pAn,k,`−1(p) +An,k−1,`−1(p). (16)

which implies that (15) holds for n+ 1. We claim that

An,k,`(p) =
∑
π∈Sn

exc (π)=n−`
cyc (π)=k

pcdes (π). (17)

Given a π′ ∈ Sn+1. Suppose exc (π′) = n + 1 − ` and cyc (π′) = k. In order to get π′ from

π ∈ Sn by inserting the entry n+ 1, there are three ways:
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(i) If exc (π) = n − ` and cyc (π) = k, we can insert n + 1 right after a drop (i.e., the index

i such that i > π(i)) or a fixed point. Note that there are ` choices for the position of

n+ 1. The first term of the right-hand side of (16) is explained.

(ii) If exc (π) = n− `+ 1 and cyc (π) = k, we can insert n+ 1 right after an excedance. This

means we have n+ 1− ` choices for the position of n+ 1. Note that the number of cycle

descents will increase by 1. The second term in the right hand side of (16) is explained.

(iii) If exc (π) = n − ` + 1 and cyc (π) = k − 1, we can insert n + 1 right after π as a fixed

point. The last term in the right hand side is explained.

This completes the proof of (17).

Combining Theorems 2.9 and 2.12, we immediately get the following result.

Corollary 2.13 Let hn,k,` de defined by (9). Then

hn,k,` = #{π ∈ Sn : cyc (π) = k, exc (π) = n− `}.

2.5 On the expansion of (abDG2)
n
, where G2 = {a→ b, b→ b}

Consider G2 = {a→ b, b→ b}. When n = 2, 3, we have

(abDG2)
2

= (ab3 + a2b2)DG2
+ a2b2D2

G2
,

(abDG2
)
3

= (ab5 + 5a2b4 + 2a3b3)DG2
+ 3(a2b4 + a3b3)D2

G2
+ a3b3D3

G2
.

Recall that Qn is the set of Stirling permutations of order n. Let σ = σ1σ2 · · ·σ2n ∈ Qn.

For 1 6 i 6 2n − 1, a value σi is called a left-to-right minimum if σi < σj for all 1 6 j < i or

i = 1. Let lrmin (σ) be the number of left-to-right minima of σ. Based on empirical evidence,

we can now present the following result.

Theorem 2.14 Let G2 = {a→ b, b→ b}. Then

(abDG2
)
n

=

n∑
k=1

n∑
`=k

gn,k,`a
`b2n−`Dk

G2
, (18)

where gn,k,` = #{σ ∈ Qn : lrmin (σ) = k, des (σ) = `}.

Proof (A) Note that the expansion (18) holds for n = 1, 2, 3. We proceed by induction.

Suppose (18) holds for a given n. Then we have

(abDG2)
n+1

= abDG2

(
n∑
k=1

n∑
`=k

gn,k,`a
`b2n−`Dk

G2

)

=

n∑
k=1

n∑
`=k

gn,k,`
[(
`a`b2n−`+2 + (2n− `)a`+1b2n−`+1

)
Dk
G2

+ a`+1b2n−`+1Dk+1
G2

]
.

Extracting the coefficient of a`b2n−`+2Dk
G2

on both sides leads to the following recursion:

gn+1,k,` = `gn,k,` + (2n− `+ 1)gn,k,`−1 + gn,k−1,`−1, (19)
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with g1,1,1 = 1 and g1,k,` = 0 if (k, `) 6= (1, 1). Thus the expansion (18) holds for n+ 1.

(B) We claim that gn,k,` = #{σ ∈ Qn : lrmin (σ) = k, des (σ) = `}. Given a σ′ ∈ Qn+1

with lrmin (σ) = k and des (σ) = `. In order to get σ′ from σ ∈ Qn by inserting two copies of

n+ 1, there are three ways:

(i) If lrmin (σ) = k and des (σ) = `, we can insert the two copies of n+1 right after a descent.

Note that there are ` choices. The term `gn,k,` is explained.

(ii) If lrmin (σ) = k − 1 and des (σ) = `− 1, we can insert the two copies of n+ 1 just before

σ. The last term in the right hand side of (19) is explained.

(iii) If lrmin (σ) = k and des (σ) = ` − 1, we can insert the two copies of n + 1 to one of the

remaining positions. This means that we have 2n − (` − 1) choices. The middle term in

the right hand side of (19) is explained.

This completes the proof of (19).

2.6 On the expansion of (aDG3
)
n
, where G3 = {a→ b2, b→ b2}.

We say that T is a planted ternary increasing plane tree on [n] if it is a ternary tree with

2n− 1 unlabeled leaves and n labeled internal vertices, and satisfying the following conditions

(see Figure 4, where we give each leaf a weight):

(i) Internal vertices are labeled by 1, 2, . . . , n. The node labelled 1 is distinguished as the

root and it has only one child;

(ii) Excluding the root, each internal node has exactly three ordered children, which are

referred to as a left child, a middle child and a right child;

(iii) For each 2 6 i 6 n, the labels of the internal nodes in the unique path from the root to

the internal node labelled i form an increasing sequence.

We say that F is a ternary k-forest on [n] if it has k connected components, each component is

a planted ternary increasing plane tree, the labels of the roots are increasing from left to right

and the labels of the k-forest form a set partition of [n].

1

2

bb
3

bba
;

1

2

b
3

bba

a

;

1

2

3

bba

ba

Figure 4: Planted ternary increasing plane trees on [3] encoded by ab4DG3
and a2b3DG3

.

Let F be a ternary k-forest. We introduce a labeling of F as follows (see Figure 4 for

illustrations). Label each planted ternary increasing plane tree by DG3
, middle and right leaves
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are both labeled by b, the other leaves are labeled by a. If a tree has only one internal vertex

and a leaf, then we label the leaf by a. Along the same lines as in the proof of Theorem 2.9, it

is routine to verify the following.

Theorem 2.15 Let G3 = {a→ b2, b→ b2}. For any n > 1, we have

(aDG3)
n

=

n∑
k=1

n∑
`=k

Cn,k,`a
`b2n−k−`Dk

G3
,

where the coefficients Cn,k,` satisfy the recurrence relation

Cn+1,k,` = `Cn,k,` + (2n− k − `+ 1)Cn,k,`−1 + Cn,k−1,`−1, (20)

with C1,1,1 = 1 and C1,k,` = 0 if (k, `) 6= (1, 1). The coefficient Cn,k,` counts ternary k-forests

on [n] with 2n − k − ` middle and right leaves. In particular, we have Cn+1,1,` = Cn,`, where

Cn,` is the second-order Eulerian number, i.e., the coefficient x` in Cn(x).

Define

C̃n(x, y, z) =

n∑
k=1

n∑
`=k

Cn,k,`x
`y2n−k−`zk.

It follows from (20) that

C̃n+1(x, y, z) = (xz + 2nxy)C̃n(x, y, z) + xy(y − x)
∂

∂x
C̃n(x, y, z)− xyz ∂

∂z
C̃n(x, y, z),

with C̃0(x, y, z) = 1. When x = y, one has

C̃n+1(x, x, z) = (xz + 2nx2)C̃n(x, x, z)− x2z ∂
∂z
C̃n(x, x, z), (21)

Let C̃(x, x, z; t) =
∑∞
n=0 C̃n(x, x, z) t

n

n! . Then (21) can be written as

(1− 2x2t)
∂

∂t
C̃(x, x, z; t) = xzC̃(x, x, z; t)− x2z ∂

∂z
C̃(x, x, z; t), C̃(x, x, z; 0) = 1.

With help of mathematical programming, we find the following result.

Theorem 2.16 We have

C̃(x, x, z; t) = exzt·Cat(x2t/2),

where Cat(z) = 1−
√
1−4z
2z is the generating function for the Catalan numbers 1

n+1

(
2n
n

)
.

Corollary 2.17 For all n > 0, we have

C̃n+1(x, x, z) =

n∑
j=0

(n+ j)!

2j(n− j)!j!
xn+1+jzn+1−j =

n∑
j=0

b(n, j)xn+1+jzn+1−j ,

where b(n, j) is the Bessel number of first kind [42, A001498].
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Proof Using [44, Eq. (2.5.16)], we get

C̃(x, x, z; t) =
∑
j≥0

xjzjtj Catj(x2t/2)

j!

= 1 +
∑
j≥1

∑
i≥0

j

(i+ j)j!2i

(
2i− 1 + j

i

)
x2i+jzjti+j

= 1 +
∑
i≥0

i∑
j=0

j + 1

(i+ 1)(j + 1)!2i−j

(
2i− j
i− j

)
x2i−j+1zj+1ti+1.

Hence, for all n > 1, we get

C̃n(x, x, z) = n!

n−1∑
j=0

j + 1

n(j + 1)!2n−1−j

(
2n− j − 2

n− 1− j

)
x2n−j−1zj+1,

which is equivalent to

C̃n(x, x, z) =

n−1∑
j=0

j!

2j

(
n− 1

j

)(
n+ j − 1

j

)
xn+jzn−j .

After simplifying, we get the desired explicit formula.

3 A classification of context-free grammars and applications

From Table 1 to Table 7, we list some sequences of combinatorial interest and give a clas-

sification of the corresponding grammatical descriptions. For each sequence, we give the cor-

responding entry in [42]. In particular, we provide new grammatical descriptions for Bessel

polynomials, Chebyshev polynomials, Hermite polynomials, logarithmic polynomials arising

from the integral
∫

ee
ex

dx [17], the number of partial partitions of [n+ k − 1] that contain ex-

actly k parts and no singletons [25], the number of derangements over [n+k] with k cycles [29],

and Ward numbers [1]. The results in these tables can be proved by induction, and we omit

the details for simplicity.

Table 1 Context-free grammars related to Eulerian numbers

Grammatical bases Entry Description

G = {a→ 1, b→ 1}
Eulerian numbers [11, 15], A008292 (abDG)n(a)

r-Eulerian numbers [26], A144696, A144697 (abDG)n(ar)

r-order Eulerian numbers [9, 37],

A0085177, A219512
(abrDG)n(a)

G = {a→ a, b→
c, c→ c}

Eulerian numbers, A008292 (bDG)n(ab)

r-Eulerian numbers [26], A144696, A144697 (bDG)n(abr)

r-order Eulerian numbers [9, 37],

A0085177, A219512
(bcrDG)n(a)

G = {a→ b, b→ 1}
Coefficients of André polynomials [15], A094503 (aDG)n(a)

Coefficients of 1
2
An(2x), see (23), A156365 (abDG)n(a)

Coefficients of xnA
(2)
n

(
1
2x

)
, see (24), A185410 (abDG)n(b)
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Table 2 Context-free grammars related to Stirling numbers

Grammatical bases Entry Description

G = {a→ pa, b→ b}

Stirling numbers of the

first kind, c(n, k), see Theorem 1.4, A132393
(bDG)n(ab)

Type B Stirling numbers of the

first kind, cB(n, k), see Theorem 1.4, A039758
(b2DG)n(ab)

G = {a→ a, b→ 1}
Stirling numbers of the second kind [8], A008277 (bDG)n(a)

Lah numbers,
(
n
k

) (n−1)!
(k−1)!

, A105278 (b2DG)n(a)

The independence polynomial of

the n× n rook graph, k!
(
n
k

)2
, A144084

(b2DG)n(ab)

G = {a→ ab, b→ 1}
Bessel polynomials, A100861 Dn

G(a)

2n−k
{
n
k

}
, A008277 (bDG)n(a)

2k
{
n
k

}
B

, A154537 (bDG)n(a2b)

G = {a→ ab, b→
−1}

Coefficients of modified Hermite

polynomials 2−
n
2 Hn

(
x√
2

)
, A096713

Dn
G(a)

Type B Stirling numbers of the

second kind
{
n
k

}
B

, A039755
(bDG)n (ab)

G = {a→ 2ab, b→
−1}

Coefficients of Hermite polynomials Hn(x),

A060821
Dn

G(a)

2k
{
n
k

}
B

, A154537 (bDG)n (ab)

G = {a→ a2, b→ 1}
k!
{
n
k

}
, A019538 (bDG)n(a)

(k − 1)!
{
n
k

}
, A028246 (bDG)n(ab)

Ward numbers [1], A134991 (abDG)n(a)

The number of partial partitions of

[n+ k − 1] that contain exactly k parts

and no singletons [25], A124324

(abDG)n(b)

The number of derangements over [n+ k]

with k cycles [29], A259456
(ab2DG)n(a)

Table 3 Context-free grammars related to Eulerian and Narayana numbers

Grammatical bases Entry Description

G = {a→ b, b→ a}
Type B Eulerian numbers [31], A060187 (abDG)n(ab)

1/2-Eulerian numbers [31],

A
(2)
n (x), A185410

(abDG)n(a)

Coefficients of xnA
(2)
n (1/x) [31], A185411 (abDG)n(b)

Narayana numbers [35], A001263 (a2b2DG)n(a2)

Type B Narayana numbers [35], A008459 (a2b2DG)n(ab)

Coefficients of left peak

polynomials [30], A008971
(aDG)n(a)

Coefficients of interior peak

polynomials [11, 30], A008303
(aDG)n(b)(

n+1
2k

)
, A034839 (a2DG)n(ab)(

n+1
2k+1

)
, A034867 (a2DG)n(b2)(

n+1
2k−n

)
, A119900 (a2DG)n(a2)
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Table 4 Context-free grammars related to derivative polynomials

Grammatical bases Entry Description

G = {a→ ab, b→
1 + b2}

Derivative polynomials of secant

function [28], A008294
Dn

G(a)

Derivative polynomials of tangent

function [28], A008293
Dn

G(b)

Chebyshev polynomials of the first kind,

A008310
(aDG)n(ab)

Chebyshev polynomials of the second kind,

A008312
(aDG)n(a2)

f -vectors of the simplicial complexes dual

to the permutohedra of type An, A019538
(bDG)n(a2)

f -vectors of the simplicial complexes dual

to the permutohedra of type Bn, A145901
(bDG)n(ab)

One Galton triangle 2n−2k
(
2k
k

)
k!
{
n
k

}
, A187075 (bDG)n(a)

Another Galton triangle, A186695 (bDG)n(b)

Table 5 Context-free grammars related to up-down run polynomials

Grammatical bases Entry Description

G = {a→ a, b→
c, c→ b}

Up-down run polynomials [32, 45], A186370 (bDG)n(a)

Alternating run polynomials [32, 45], A059427 (bDG)n(a2)

Flag descent polynomials [31], A101842 (bcDG)n(ab)

Flag ascent-plateau polynomials [36], A256978 (bcDG)n(a)

Type B Eulerian polynomials [5, 31], A060187 (bcDG)n(bc)

Number of atomic set compositions of

size n and of length i [2], A109062
(abDG)n(ab)

G = {a→ qa, b→
c, c→ b}

ab
∑n

k=0

(
2n
2k

)
q2k + ac

∑n−1
k=0

(
2n

2k+1

)
q2k+1

A034839, A034867
D2n

G (ab)

ac
∑n

k=0

(
2n+1
2k

)
q2k + ab

∑n
k=0

(
2n+1
2k+1

)
q2k+1 D2n+1

G (ab)

Table 6 Context-free grammars related to Ramanujan polynomials

G = {a→ a2, b→ b}
Ramanujan polynomials [16], A054589 (abDG)n(ab)

Bessel polynomials [24], A001498 (aDG)n(ab)

Coefficients of logarithmic polynomials arising

from the integral
∫

ee
ex

dx [17],

(k − 1)!c(n, k), A188881

(bDG)n(ab)

k!c(n, k), A225479 (bDG)n(a)

G = {a→ a2, b→ qb}
Permutation coefficients n!

(n−k)!
, A008279 (DG)n(ab)

Number of k-length walks in the Hasse diagram

of a Boolean algebra of order n, A090802
(DG)n(ab2)
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Table 7 Context-free grammars related to factorial numbers

G = {a→ a2, b→ a}

The polynomials Pn(x) defined by P1(x) = 1,

Pn+1(x) = x(n+ d
dx

)Pn(x), A078341
(bDG)n(a)

The polynomials Qn(x) defined by Q1(x) = 1,

Qn+1(x) = Qn(x) + x(n+ d
dx

)Qn(x), A055356
(bDG)n(b)

G = {a→ a2, b→
bc, c→ c2}

Generate the polynomials

n!ab
∑n

k=0 a
kcn−k

Dn
G(ab)

Double factorial triangle

coefficients (2n−k)!

2n−k(n−k)!
, A193229

(bDG)n(ab)

In the sequel, we give some applications of grammatical bases.

3.1 An application

Following Savage-Viswanathan [40], the 1/k-Eulerian polynomials A
(k)
n (x) are defined by

∞∑
n=0

A(k)
n (x)

zn

n!
=

(
1− x

ekz(x−1) − x

) 1
k

.

In particular, xA
(1)
n (x) = An(x) and the 1/2-Eulerian polynomials A

(2)
n (x) are defined by

∞∑
n=0

A(2)
n (x)

zn

n!
=

√
1− x

e2z(x−1) − x
= 1 + z + (1 + 2x)

z2

2
+ (1 + 10x+ 4x2)

z3

6
+ · · · .

They satisfy the recursion

A
(2)
n+1(x) = (1 + 2nx)A(2)

n (x) + 2x(1− x)
d

dx
A(2)
n (x), (22)

with A
(2)
0 (x) = 1. Some of the combinatorial interpretations of A

(2)
n (x) are given as follows:

• Ascent polynomial over the inversion sequences {(e1, . . . , en) ∈ Zn : 0 6 ei 6 2(i − 1)}
(see [40]);

• Enumerative polynomial of perfect matchings of [2n] by the number of blocks with odd

larger elements (see [33]);

• Ascent-plateau polynomial of Stirling permutations in Qn (see [34]).

Let σ be a Stirling permutation in Qn. The numbers of ascent-plateaux and left ascent-

plateaux of σ are respectively defined by

ap (σ) = #{i ∈ {2, 3, . . . , 2n− 1} : σi−1 < σi = σi+1},

lap (σ) = #{i ∈ [2n− 1] : σi−1 < σi = σi+1, σ0 = 0}.

According to [34], we have

A(2)
n (x) =

∑
σ∈Qn

xap (σ), xnA(2)
n

(
1

x

)
=
∑
σ∈Qn

xlap (σ).
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Let G = {a→ b, b→ 1}. As listed in Table 1, for n > 1, it is easy to check that

(abDG)n(a) =

n∑
k=1

2k−1
〈
n

k

〉
akb2n+2−2k =

1

2
b2n+2An

(
2a

b2

)
, (23)

(abDG)n(b) = anbA(2)
n

(
b2

2a

)
. (24)

Since (abDG)
n+1

(b) = (abDG)
n

(ab) =
∑n
k=0

(
n
k

)
(abDG)

k
(a) (abDG)

n−k
(b), we obtain

(abDG)
n+1

(b) = a [(abDG)
n

(b)] +

n∑
k=1

(
n

k

)
(abDG)

k
(a) (abDG)

n−k
(b).

It is well known that Eulerian polynomials are symmetric, i.e., xn+1An
(
1
x

)
= An(x). Combin-

ing this with (23) and (24), after simplifying, we find the following result.

Theorem 3.1 For any n > 1, one has

A
(2)
n+1(x) = A(2)

n (x) +

n∑
k=1

(
n

k

)
2kAk(x)A

(2)
n−k(x).

Since A
(2)
n (1) = (2n− 1)!!, it follows that

(2n+ 1)!! = (2n− 1)!! +

n∑
k=1

(
n

k

)
2kk!(2n− 2k − 1)!!.

3.2 Another application

Let ±[n] = [n] ∪ {−1,−2, . . . ,−n}, and let Bn be the hyperoctahedral group of rank n.

Elements of Bn are signed permutations of ±[n] with the property that σ(−i) = −σ(i) for all

i ∈ [n]. The type B Eulerian polynomials are defined by

Bn(x) =
∑
σ∈Bn

xdesB(σ),

where desB(σ) = #{i ∈ {0, 1, 2, . . . , n − 1} : σ(i) > σ(i+ 1)} and σ(0) = 0. They satisfy the

recursion (see [5, Eq. (11)]):

Bn(x) = (1 + (2n− 1)x)Bn−1(x) + 2x(1− x)
d

dx
Bn−1(x), B0(x) = 1. (25)

Let Bn(x) =
∑n
k=0B(n, k)xk. The type B Eulerian number B(n, k) satisfy the recursion

B(n, k) = (1 + 2k)B(n− 1, k) + (2n− 2k + 1)B(n− 1, k − 1), B(0, 0) = 1. (26)

As listed in Table 3, using (22) and (25), we find that if G = {a→ b, b→ a}, then

(abDG)n(ab) = ab2n+1Bn

(
a2

b2

)
,

(abDG)n(a) = ab2nA(2)
n

(
a2

b2

)
, (abDG)n(b) = ba2nA(2)

n

(
b2

a2

)
. (27)
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Theorem 3.2 If G = {a→ b, b→ a}, then

(abDG)
n

=

n∑
k=1

b(2n−k)/2c∑
`=0

pn,k,`a
k+2`b2n−k−2`Dk

G, (28)

where the coefficients pn,k,` satisfy the recurrence relation

pn+1,k,` = (k + 2`)pn,k,` + (2n− k − 2`+ 2)pn,k,`−1 + pn,k−1,`, (29)

with p1,1,0 = 1 and p1,k,` = 0 if (k, `) 6= (1, 0). Moreover, Bn(x) =
∑n
`=0 pn+1,1,`x

` and

n∑
k=1

b(2n−k)/2c∑
`=0

pn,k,`x
k+2` =

∑
σ∈Qn

xap (σ)+lap (σ). (30)

Proof (A) When n = 2, 3, we have (abDG)
2

= (ab3 + a3b)DG + a2b2D2
G and

(abDG)
3

= (ab5 + 6a3b3 + a5b)DG + 3(a2b4 + a4b2)D2
G + a3b3D3

G.

Assume the expansion (28) holds for a given n, where n > 2. Then we have

(abDG)
n+1

= abDG

 n∑
k=1

b(2n−k)/2c∑
`=0

pn,k,`a
k+2`b2n−k−2`Dk

G


=
∑
k

∑
`

pn,k,`
(
(k + 2`)ak+2`b2n−k−2`+2 + (2n− k − 2`)ak+2`+2b2n−k−2`

)
Dk
G+∑

k

∑
`

pn,k,`a
k+2`+1b2n−k−2`+1Dk+1

G .

Extracting the coefficient ak+2`b2n−k−2`+2Dk
G, we arrive at the desired recursion (29), and so

the expansion (28) holds for n+ 1.

(B) Let

pn(x, y, z) =

n∑
k=1

b(2n−k)/2c∑
`=0

pn,k,`x
k+2`y2n−k−2`zk.

It follows from (29) that

pn+1(x, y, z) = (xyz + 2nx2)pn(x, y, z) + x(y2 − x2)
∂

∂x
pn(x, y, z), p0(x, y, z) = 1.

When y = z = 1, we get

pn+1(x, 1, 1) = (x+ 2nx2)pn(x, 1, 1) + x(1− x2)
d

dx
pn(x, 1, 1), (31)

with p0(x, 1, 1) = 1, p1(x, 1, 1) = x, p2(x, 1, 1) = x+x2+x3, p3(x, 1, 1) = x+3x2+7x3+3x4+x5.

Combining (31) with [36, Eq. (16)], we arrive at (30). Comparing (29) with (26), we see that

pn+1,1,` = B(n, `). and the proof of the theorem is complete.

Using (27) and (28), after simplifying, it is routine to verify the following result.
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Corollary 3.3 We have

A(2)
n (x) =

∑
σ∈Qn

xap (σ) =
∑
k>1

∑
`>0

pn,2k,`x
k+` +

∑
k>1

∑
`>0

pn,2k−1,`x
k+`−1,

xnA(2)
n

(
1

x

)
=
∑
σ∈Qn

xlap (σ) =
∑
k>1

∑
`>0

pn,2k,`x
k+` + x

∑
k>1

∑
`>0

pn,2k−1,`x
k+`−1,

where pn,k,` = #{σ ∈ Qn : ap (σ) + lap (σ) = k + 2`}. In other words, we get the following

decompositions:

A(2)
n (x) = f1(x) + f2(x), xnA(2)

n

(
1

x

)
= f1(x) + xf2(x),

where f1(x) =
∑
k>1

∑
`>0 pn,2k,`x

k+` and f2(x) =
∑
k>1

∑
`>0 pn,2k−1,`x

k+`−1 are both sym-

metric polynomials. Furthermore,

Bn(x) =

n∑
k=0

(
n

k

)
xn−kA

(2)
k (x)A

(2)
n−k

(
1

x

)
, (32)

which implies that the type B Eulerian polynomial Bn(x) is symmetric, i.e., Bn(x) = xnBn
(
1
x

)
.

Problem 3.4 It would be interesting to give bijective proofs of Theorem 3.1 and (32).

4 Conclusions

In this paper, we consider the decomposition of a formal derivative as a multiplication of a

function with another simpler formal derivative. This decomposition can be used to refine the

context-free grammar and thus obtain new refinements of the underlying combinatorial objects.
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